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the other incorporating the cost of observations .

Work was also completed on an Imperfect Software Deougging Model that assumes
errors are not corrected with certainty. By assuming the initial number of
errors, probability of successfully correcting an error , and constant error
occurence rate are all known, formulas for such quantities as distribution of
t ime to completely debugged software , distribution of time to a specified
number of remaining errors , and expected number of errors detected by time t
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incorporate error correction time , estimation of model parameierR and develop-
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system errors are classified as serious and non—serious ; development of empir i-
cal models for software error data; develon~nent of sottware reliability demon-
stration plans for making accept/reject decisions for software packages ; and
investigating the effects of changes in prior distributions and/or model para-
meters on quantities of interest.
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2.1.2 Predict ive Distributions

L e t  t he random variables X and I denote the error occurrence time

and the Phase I error correction time, respectively , wi th probability

density f unctions

f (x IA ) ~ 
. e~~’A , x > o , x > o

and
1

~ e , y > 0, >0.

Let the prior distributions for and A be inverted gamoas given

by

1 
cz
1 

— (a +1) 6l’~
1
l61 P1 

1 e , a1,61 > 0

and 
1 a

2 
— ( ct2+1) — 6 2 /A

~ I’(cz2) 62 A e c&2 ,6 2 -, 0.

Finally , let x (x1, ..., x )  and ~ = (y1, . .. ,  y )  be the observed

values of n error occurrence times and n error correction times, re-

spectively.

Now we obtain expressions for the predictive distributions of Y

and X and the Bayesian estimates 9 and ~ wh ich we will use to
n+l n+l

obtain the cost fu nction .

~or given observat ions ~~~, the likelihood funct ion of is
n

— ~; y 11;i 1
~ ~—n 

~~ 
i—i

and the posterior distribution of 
is4



(~ 
+ ~~y~ )

1 
-(a

1~~
+l)

p(~’1 
jy) Nc* +n) 

e

Then , the predictive distribution of error correction time at

Phase I is
n + c z  -(n-f~~+l)

g(y~v~)~~~~( 
1 ) ( l +  Y

~~y + 6 E y  + 611

and the cumulative predictive distribution to some specified time t is

t -(n+~& )
G(t~~ ) = 

J
g(Y I~~)dt  = 1 - (1 + 

+ 

)

i=1

We define the predictive Phase I error correction rate as

g(t ~
)

r(tI~~
)

C (tly)

so that
-l

r (t [v~) = ( ) (1 + )
E y 1 + 6 1i=l i 1

where

~ ( t)  = 1 — G( t )

From the above results  the Bayesian estimate of the (n+l)st error

correction time for given ~ is

+

+ n — 1

Proceeding similarly , the Bayesian estimate of the time to (n+1)st error

occurrence, for given x , is

E X ~

*n+1 cz2 l-n l
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2.1.3 Cost Function

Let c1(c 2 ) be the cost per unit  time of error correction in Phase I

(P’iase II) and the costs be linear functions of time. If we consider

one cycle to be the time from the beginning of (n+1)st eperation to the

beginning of (n+2)nd operation , then the expected cost in one cycle is

T
E (C) — c1f ~(tIi)dt + c2 U2 C (T I~) ,

0

where T denotes the scheduled correction limit time in Phase I.

The expected length of one cycle is

It
E(T) — + f G(t~ v~)dt + U2 ~(TIi)

0

and hence the long run exp ~te cost per unit time is

C( T) -  E(T)

or T
c1 J~~(t l z)dt + c

2 U2 ~ (TI~~
)

C(T) — 0

+ J~~(t~~)dt + ~2 ~(TIz)

2.1.4 Optimum Policy

From the above expressions , we note that

C
2 P2C(o) — —

+ U2

and

C ,1 n+lC(s) —
+

6



where 
~~~ 

is the Bayesian estimate of y for given data z• Also, no te

that I = 0 means that the errors are corrected only at Phase II while

T — ~ means that they are corrected at Phase I.

To obtain an optimum T* which minimizes the long run average cost per

u n i t  time, C(T) , we need the following theorems and corollary . They are

given here without proofs.

Theorem 2.1:

Assume c1<c 2 . Then the re exists a finite and unique T* which satisfies

T
r(TI~) (C

2 
Zn+l + (c2

_c
l) J~ (tl~)dt}

0

+ (c
2
_c

l
) ~(TIx) 

— 
Cl ~cn+l

under the following condition

+ ii2) — c2 ~2
r(0I~~) 

>

C2

Theorem 2 .2:  -

If the above conditions are satisfied then there also exists a finite

and unique upper bound T(>T*) such that

c~~~— 1 n+lr (T~~) —

1i2{c
2 
x
~~1 

+ (c
2
—c
1
)p 1}

This upper bound can be used to obtain an initial value for solving

the nonlinear equations in T*.

Corollary 2.3

If there exists an optimum T5 then the associated cost function is given

by
C

1
C ., 

~2 r(T*II)C(T*) —
— 

~2 r (T*IZ)
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2.1.5 Numerical Example

We use aimulate~
, data in this example to illustrate the calculation

and nature of various quantities in the determination of 1*.

Let

— 8000 c2 — 9000

B
i

0

02 0

— 0.7

The simulated data (x , y )  are given in Table 2.1. Suppose n — 10 data

points are available. The Bayesian estimates of failure time and correction

time are x11 
— 59.60 and y11 

— 0.78, respectively. Such values for various

n are given in Table 2.2 . For the case n — 10 we see that the optimum

correction limit time is T* 0.90 hours and the corresponding minimum

cost tate is C(T*) — 99.44 dollars/hour.

Thus, for this Set of data, we will schedule corrective action in

Phase I for 0.90 hours and if ft cannot be completed in this time, the

software system will be referred to the system programeer for corrective

action.

8



Table 2.1

Simulated Values of x and yn n

n x~ (Hrs.) y~ (Hrs.) fl X (Hrs.) y~ (Hre.)

1 61.34 1.90 11 53.44 1.03

2 27.84 1.08 12 2.87 0.95

3 ~~ 154.30 0.85 13 31.27 0.60

4 14.58 0.26 14 97.06 0.02

5 10.86 0.01 15 78.17 1.49

6 35.35 0.31 16 124.52 0.52

7 140.13 0.38 17 0.49 0.36

8 36.47 1.50 18 12.33 0.08

9 8.74 0.43 19 85.44 3.51

10 46.79 0.27 20 23.59 0.10

9



Table 2.2

Calculation for the Optimum Correction Time Policy

T* (hr.) C(T*)

2 89.17 2.98 0 70.10

3 121.74 1.92 0 51.45

4 86.02 1.36 0 72.6 5
5 67.23 1.02 0 92.74

6 60.85 0.88 0.32 101.05

7 74.07 0.80 0.73 80.11

8 68.70 0.90 0.0~ 90. 78
9 61.20 0.84 0.38 100.60
10 59.60 0.78 0.90 99.44

11 58.98 0.80 0.66 102.87

12 53.88 0.82 0.50 113.82

13 52.00 0.80 0.68 116.85

14 55.46 0.74 1.45 103.80

15 57.09 0.79 0.75 106.51

16 61.58 0.77 1.02 97.47

17 57.76 0.75 1.45 101.22

18 55.09 0.71 2.16 101.14

19 56.18 0.86 0 109.61

20 55.03 0.82 0.13 112.97

10



2. 2. MODEL DEVELOPMENT INCLUDING SAMPLING COST (MODEL 2)

In this section we develop the coat medel for the 9ptimum correction

limit po l icy by incorporating sampling cost. It 1~ assumed that , in

addition to the assumptions of Section 2.1.1, the sampling cost is a

linear function of sample size,

Let c be the sampling cost at each stage, and C(T ) be the expected

cost per unit time until the completion of (n+l)st corrective action under

scheduling time T. If we decide to take another observation ((n+1)st),

then C +i(T +1
) is the cost rate function until the completion of (n+2)nd

correc tive action under scheduling time Tn+1
2.2.1 Cost Function

Following a procedure similar to that of Sections 2.1,2 and 2.1.3,

the expected cost per unit time at the end of the (n+l)st corrective action is

T

EX~ + C
1 J C ( t J ~~)dt + c2p2 ~( T I ~)

C (T ) =
n n 

E x~ + + E + 
T~ 

+ ~~ ~ (T IZ)
1—1 1—1 0

If we decide to take the next, (n+l)st , observation, then the cost rate

function to the end of (n+2)nd corrective action is similarly obtained as

T +i
. (n+l)c+c1 J ~(tiy)dt + c

2 ~2 
G(TI~~)

I ‘. 
0C~~1

,~L~~ 1J - 
n n
E x1 + 2 x~~1+ ~~Y1 + 9n+l + ~ ~(tIZ)

dt+ 
~2 

G(T~ ,.1Iz)
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2.2.2 OptImum Policy

Our objective is to determine the optimum sample size n~ and the

optimum correctIon limit T ~ •uch thatn

C(T *) ‘ C
~+1(T

~+1
)

Given that n observations have been taken, the following steps sumearize

the procedure of determining these quantities:

(i) Calculate C (T*) and C ÷i
(T
~~i
)

(ii) If C (T*) ‘ C +i(T*+1
) ,  then stop taking observations and

employ n~ and as the optimum policy.

(iii) If C (T*) > C
+i(T*), take (n+1)st observatton, i.e. let

it — n+1 and go to step (I).

The following theorems are useful in determining C~(T~) and C~+1
(T
~~1
).

These are given here without proofs.

Theorem 2.4

Suppose c1 
< c

2 
and A ~ 0. Then there exists a unique and finite

satisfying T

r(T lX) (A + (c2—c1) 

~
5 ~(tli)dt}+ (c2—c1) ~

(T
~ Iz) 

— B

where

A c
2
{E xi

+;
+1 Z y1} — m c

i—I i—i

B — -L [e1{
~ ~t 

+ X
n+l 

+ E - nc]

Also, the associated cost rate function is given by

— c2 I’2 r
(T*)

C~ (T~) — 
1 — P2 r(T*)

12



Theorem 7.5

If the conditions of Theorem 2.4 hold , then there exists a finite and

*upper bound T (> I) such that

r (~~I~) 
— 
A 4 (C2—e1)9~~1

Theorem 2.~ b

If both T* and T exist, then the following relationship holds:
it n+l

C(T*) C~~1(T
*~1)

* *< >  r(T ) > r (T 
+l~~ (<) ~

* *<—> T > T
~ (i.)

2 .2 . 3  Numerical ~xample

In this example we use simulated data to illustrate the determination

* *of n and T. Simulated values of x1~ and y for various n are given in

Table 2.3. Let

— 8000, c2 
— 9000, c — 40

— .8 61 
— 1

a2
O

p2 
— 0.7

* * * *Then the calculated x~~1, y~~~, 
T~, C~ (T~), T~+i and Cn+j(Tn+j) are

computed from the above expressions and are given in Table 2.4 , From this

table we see that for n — 11, C11
(T~1) — 21,74 and C12(T~2) — 23 , 63 so that

13



Table 2.3

Simula ted Values of x and y
n n

a x~ (hr) y (hr) 
- - 

n x~ (hr) y~ (hr )

1 32.25 1.69 10 3.72 0.15

2 34.77 0.12 11 50. 85 0.07

3 63. 92 0,23 12 64. 89 0.12
4 21.03 0.41 13 0.76 0.29

5 39.42 0.20 14 87.45 1.33

6 9.97 0.37 15 64.12 0.77

7 3.69 0.22 16 30.98 1.37

8 2.42 1.75 17 127.05 1.39

9 10.71 3.00 18 85.54 0.21

Table 2.4

Calculations for the Optimum Policy

* * * *n x y T C ( T ) T C (T )
n+l n+1 n n it n+l n+1 n+1

2 67.01 1.56 0 46.73 0 37.72

3 65.47 1.09 0 32.24 0 32.05

4 50.65 0.91 0.33 30.9 0.33 27.06

5 47.85 0.76 0.92 24.44 0.92 23.74

6 40.27 0.69 0.12 23.00 0.13 20.55

7 34.17 0.62 0.19 21.43 0.19 19.12

8 29.64 0,77 0.95 25.63 0.95 23.25

9 27.27 1.02 0 26.21 0 24.93
10 24 ,66 0.93 0 26.23 0 24.32
U 27.27 0, 85 0.09 21,74 0.09 23, 63

14



* * * *C
11(T11) 

< C12 (T12). Therefore, the optimum policy is n — 11 and T — 0.09.
2.3 Concluding Remarks

In the previous sections we have given an overview of the key results

for obtaining correction limit policies for two models, For the first model

the sampling costs are assumed to be negligible while for the second , the

sampling cost is taken to be a linear function of sample size. The main

theorems have been given without proofs and the policy determination was

illustrated via two numerical examples .

A detailed technical report on this task is being completed for sub-

mission to RADC.

15



1. A SOFTWA.RE RML,LABILITY MODEL W ITH I MPERFECT DE BUGG INO

The purpose of th i s  study is to develop sof tware reliability models

for the case when errors are not corrected with certainty. In other words ,

we are interested in developing and studying software reliability models

fo r the case when the prograuner sometimes fails to correct a detected error .

A description of the key results is given In the following subsections.

3.1 Assumptions

The following assumptions are made for developing the model.

(I) Errors in the software are independent of each other and have

a constant occurrence rate A.

(ii) The p robability of 2 or more errors occurring at the same t ime

is negligible. Then, if there are it errors in the software at

present , the distribution of time to the next failure is

f(t) — nA .e~~
IAt

(i i i)  The correction time In the model is assumed to be zero. This

assumption may not hold in some situations. We plan to develop

another model which will include error correction time.

3.2 Model Development

Let p be the probability of successfully correcting an error ,

q be the probability that the error is not corrected , q — l— p,

X(t) be a random variable denoting the sy’te* state,

N be the initial number of errors.

Let 
~N N—]. 

and 
~N N represent the transition probabilities from state N to

states N—I and N , respectively . Then the cumulative distribution function (cdf)

of the t ime to next error at state N is

16



F
N

(t ) — 1 — e At

1’N ,N— l 
—

~N , N 
— q

in general , the cdf of one step transition for the underlying Markov

Process is:

Q~~ (t) =

where F~ (t) = 1 — e~~~
t
,

(P if .j = 1— 1 , l < i < N

P
1~ =1

1 q i f j — i

10 otherwise

and 1 i f j = O
P r
Di 

~

= 

10 otherwise

This can be represented as:

0 1 2 N—i N

(P
1~
) = .

N 1  ~ q 0

N 0 p q

The above expressions constitute the basic model for the error process

with parameters N, p and A. For these expressions we obtain various quantities

of interest in the following subsections.

17



3 3  Distribution of Time to a Completely 1)ebug~ed SoftwaLe

Let

G1 0 (t) = cdf of first passage time from i to 0 by time t.

Then , by conditioning on the next one step , we get the renewal equa-

tions which we solve by Laplace—Stieltjes transforms. We get the cdf and

pdf of first passage time as

GN O (t) 
~~ 

C~~(l — e
_iPXt

)

and

j~ l ~ 
jpA e

_j
~~

t
,

where C
1 

= (~
) (~~~) i_ l

The cd f ’ s of the  f i r s t  passage times for  several values of p ,  N 10 ,

and A = 0.02 are shown in Figure 3.1. As expected , the cdf for a larger p

dominates that for a smaller p.

3.4 Distribution of Time to a Specified Number of Remaining Errors

In many situations we are not interested in a completely debugged

program because of the cost involved. We may be willing to tolerate a

certain number of remaining errors, say it0, which will ensure some des ired

reliability. The distribution of time to n0 Is then of interest.

18
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Figure 3.1. CDF of Time to Completely Debugged Software .
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Usi~~ an approach simj,la~ to that of SectIon 3.3, we get the cdf

and pdf as follows .

N-n

G B (1 - e~~
(fl O+J ) P Ai }

N ,n0 j ’-~l 
j , n0

and N—n 0 — ( i t  + j ) pX t

~ 
( t )  = B 

~ 
(n0+j)pAe 

0

‘ 0 J=I

where

B 
N! (_l)3 1  

~~~~j , n0 n0! 
j ! (N—n 0— j)! n0 + 

j

Plots of pdf and cdf for n
0
=0,1,..,9,A = 0.02 , N = 10 and P 0.9 are

given in Figures 3.2 and 3.3, respectively. These plots are self explanatory.

~.5 State  Occupancy Probabil i t ies

In this section we develop expressions for  computing the estimated

‘ of remaining errors  a f t e r  a spec i f i ed  tine per iod .

et

“N 
(t)  P{x( t )  = n0~X(0) = N}

‘ 0

Usinj the renewal theoretic approach and the relationsh ipsi  between

( t )  and GN ( t ),  we obtain the following resul ts;
,n
O 

,nO

.-n0Apt — (n
0
--k)pXt

(t) = A.K te — e } for 0 < n0 < N
k=l ~~~

and
PN N (t) 

= e

20
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where

NI
,n
0 

= 
n~ t k! (N—n —k) !

Further , an estimator of the number of errors remaining at time t is:

X(t) 
~ ~ O~ N n  

(t)
n<N ‘0

Plots of the probability distributions for n
0 

— 0,1,2,.. - ,lO wher. N — 10,

p — 0.9 and A — 0.02 are given in Figure 3.4.
Now suppose we want an estimate of the number of errors remaining at

time t — 100. We have

n P (100)

10 0.152 x l0~~
9 0.769 x io—6

8 0.175 x l0~~
7 0.235 x l0~~
6 0.208 x lO

_2

5 0.126 x l0~~
4 0.530 x 10~~
3 0.153

2 0.290

1 0.325

q 0.164

From these values we get

X( 100) — 
~~ ~ 

(100) 1.7
n
0
<i0 ‘ 0
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Figure 3.4. Probability Distribution for Given Number of Remaining Errors.

24



~ .6 ~~ pected Number of Errors Detected by Time t

Let N(t) be a random variable denoting the total number of errors

detected by time t. Fur ther , let MN(t) be the expected number of errors

detected by time t when the initial number of errors is N , I.e.

MN(t) = E[N(t)IX(O)=N]

Using Markov renewal theory and Laplace—Stieltjes transforms , we

obtain the following results:

1 N N~-k+jM
N
(t) = B. (1 — e

(
~~
4j)PAt

k=l j =1 j , k-~1 J

Plots of MN (t ) for  N = 3,6,9,. .~~3o , A = .02 , and p = 0.9 are given

in Figure 3.5 and are self explanatory.

3.7 Concl ud ing Remarks

in the previous sections we described the key aspects of an Imperfect

debugging model. Expressions for various quantitites of interest were de-

veloped and numerical solutions were given for selected values of unknown

parameters N, A and p.

A detailed technical report on this task will be submitted to RADC

in Spring 1977.

The model was developed on the assumption of zero correction time.

For the follow—up model, we will include the time for corrective action.

Also to be investigated is the problem of estimating the parameters from

25
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available data. In a Bayesian context , we plan to develop models when

parameters N, A and p have prior distributions.

Detailed technical reports on this task will be submitted to RADC as

work is completed.
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4. CURRENT WOR.K AND PLANS FOR THE NEXT PERIOD

The work on two modelling tasks was described in Sections 2 and 3.

[n this section we present an outline of the work being pursued and planned

for completion in the next period .

Further Work on Software Reliability Modelling with Imperfect Debugging

The following aspects of this problem will be investigated :

(i) Development of a model to incorporate error correction time.

(ii) Estimation of parameters of the models being studied .

(iii) Development and stuly of a Bayesian imperfect debugging model

Expressions for various quantitites of interest will be developed

and numerically studied .

Bivariate Software Error Model

We plan to develop software reliability models when the errors In

the system can be classified as serious and non—serious. Various quantities

of interest, for  example system availability ,  will be studied.

Sof tware Err or Data Analysis

Some preliminary work is being pursued on the development of

empirical modeiR for software error data, We plan to continue this

activity.

28



Demonstr.~t ion and Testt~~ Plans

Software reliabi Lity demonstration plans will be developed to

provide a tool for making accept/reject decisions for software packages.

Both classical and Bayesian plans will be investigated .

Sensitivity Studies

In this task we will investigate the effects of changes in prior

distributions and/or model parameters on quantities of interest. The study

will be mostly numerical in nature.
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MFIRIC SYSTEM

BASE U NITS:
O antj~~ Unit Si Sj~~bol ~~~~~~~~

length met re m
mesa kilogram kg
t ime second a
electric currant ampere A
thermod ynamic temperature kelv in K
amount of .ubst.nce mole mol . . -

luminous Intensity candela cd

SUPPLEM~~4TA1Y UNITS:
plane angle radian red
solid angle ateradian

D~~WTh UNITS:
Acceleration metre per second squared mis
dctivity (of a radioactive source) di ,in tegration per second (distntegra (ion)Ia
ang ular acceleration radian per second squared red/ s
angu lar velocity rad ian per second red/a
are. square metre m
density ki logram per cubic metre kg/rn
electric capacitance farad F A aN
electrical conductance siemens IVY
electric field atrength volt per metr e .. Vim
electric inductance henry H V.5/A
electric potential difference volt V W1A
electric resistance ohm V/A
electromotive force volt V W/A
energy joule J N-rn
entropy joule per kelvin . . .  jIK
force newton N kg.m/a
frequency hert z Hz (cycle )/a
illum inance Iwi lx lmlm
luminance candela per square metre cd/rn
luminous flux lumen Im cd.ar
magnetic field strength ampere per metre Aim
magnet ic flux weber Wb V.a
magnetic flux denalty teals T Wb/m
inagnetomotive force ampere A
power watt W la
presaure pascal Pa N/rn
quantity of electricity coulomI~ C A-a
quantity of hea t joule J N.m
radiant intensity watt per aterad ian .. W/sr
apecific heat toule per kilogram-kelvin l/kw K
atresa pascal Pa N/ rn
thermal conductivity watt per metre-kelvin .. W/ m.K
velocity metre per second mis
viscoaity , dynamic p.acal.aecond ... Pa.s
viacoelty. kinematic aquara metre per second •.. mla
vol tage volt V W/A
volume cubic metre m
waven u mber reciprocal metre (waveym
work ~o’ile I N.m

SI PR EFIXES:

- . 
Multip licatio n Factora Prefi x SI Symbol

1 000 000 000 000 ~ 10” nra
1 000 000 000 10’ gig. (

1 000 000—10 ’  meg. M
1 000 io’ kilo k

100 = 10’ h cto h
10 10’ deks’ da

0.1 1 0 ’  decl d
0.01 1 0 ’  centl c

0.00 1 • 1 0 ’  milll m
0 000 001 1 0 ’  mIcr o

0.000 (XXI 001 — 10 ’  neno fl
0.000 (100 000 001 • 1 0 ”  pi~~

0.000 000 000 (100 001 1 0 ”  femto
0.000 000 000 (5)0 000 001 1 0 ”  alto a

To be avoided where pousible



MISSION
of

Rome Air Development Center

RAX plans and conducts research, ezplordtory and advanced
developa ent programs in c~~~and , control , and coztrunications
(C3) activities, and in the C3 areas of inf ormatiorg sciences
and intelligence. The principal technical mission areas
are corivnunications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
da ta collection and handling, inf ormation system technology,
ionosp heric pr op agation, solid state scIences, microwave
phys ics and electroni c reliability, maintainability arid
~.‘ompatibili t y .
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